$1398
999 jogos,Explore o Mundo dos Jogos de Loteria em Tempo Real com a Hostess Bonita, Onde Cada Sorteio Se Transforma em Uma Nova Oportunidade de Vencer e Se Divertir..De fato, consideramos, sem perda de generalidade, a parábola ilustrada na figura ao lado. Nela, denota seu foco, seu vértice e o ponto de incidência de um feixe de partículas paralelo ao eixo de simetria dessa parábola. A reta paralela ao eixo de simetria que contém a trajetória da onda tem interseção com o eixo das abscissas no ponto e com a diretriz da parábola no ponto . Observamos que o segmento tem interseção com o eixo das abscissas no ponto , i.e. no ponto médio entre os pontos e . Por essa razão e mais o fato de que e são equidistantes do eixo das abscissas, vemos que e são triângulos congruentes. Notamos, agora, que a reta que passa pelos pontos e têm inclinação e, portanto, é a reta tangente à parábola no ponto , pois neste ponto. Assim, se é o ângulo de incidência do feixe com a reta tangente no ponto (equivalentemente, com um elemento infinitesimal do comprimento do arco da parábola no mesmo ponto) , temos que o feixe é refletido pela parábola com o mesmo ângulo. Pela congruência dos triângulos e , vemos que a onda refletida alcança o ponto , i.e. o foco da parábola.,Portugal participa desde a primeira edição, em 1953 - edição esta em que esteve representado por dois clubes (Ginásio Clube Português e Lisboa Ginásio Clube) e cinquenta atletas -, mas não esteve presente na segunda e terceira (Zagreb - 1957 e Stuttgart - 1961, respectivamente). Desde a quarta edição em 1965, participou de todas as edições, tendo um mínimo de cinquenta atletas em Berlim (1975) e um máximo de atletas de 1.874 na edição de Lisboa, em 2003..
999 jogos,Explore o Mundo dos Jogos de Loteria em Tempo Real com a Hostess Bonita, Onde Cada Sorteio Se Transforma em Uma Nova Oportunidade de Vencer e Se Divertir..De fato, consideramos, sem perda de generalidade, a parábola ilustrada na figura ao lado. Nela, denota seu foco, seu vértice e o ponto de incidência de um feixe de partículas paralelo ao eixo de simetria dessa parábola. A reta paralela ao eixo de simetria que contém a trajetória da onda tem interseção com o eixo das abscissas no ponto e com a diretriz da parábola no ponto . Observamos que o segmento tem interseção com o eixo das abscissas no ponto , i.e. no ponto médio entre os pontos e . Por essa razão e mais o fato de que e são equidistantes do eixo das abscissas, vemos que e são triângulos congruentes. Notamos, agora, que a reta que passa pelos pontos e têm inclinação e, portanto, é a reta tangente à parábola no ponto , pois neste ponto. Assim, se é o ângulo de incidência do feixe com a reta tangente no ponto (equivalentemente, com um elemento infinitesimal do comprimento do arco da parábola no mesmo ponto) , temos que o feixe é refletido pela parábola com o mesmo ângulo. Pela congruência dos triângulos e , vemos que a onda refletida alcança o ponto , i.e. o foco da parábola.,Portugal participa desde a primeira edição, em 1953 - edição esta em que esteve representado por dois clubes (Ginásio Clube Português e Lisboa Ginásio Clube) e cinquenta atletas -, mas não esteve presente na segunda e terceira (Zagreb - 1957 e Stuttgart - 1961, respectivamente). Desde a quarta edição em 1965, participou de todas as edições, tendo um mínimo de cinquenta atletas em Berlim (1975) e um máximo de atletas de 1.874 na edição de Lisboa, em 2003..